Upper Bounds via Lamination on the Constrained Secrecy Capacity of Hypergraphical Sources

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a study on the effectiveness of textual modification on the improvement of iranian upper-intermediate efl learners’ reading comprehension

این پژوهش به منظور بررسی تأثیر اصلاح متنی بر بهبود توانایی درک مطلب زبان آموزان ایرانی بالاتر از سطح میانی انجام پذیرفت .بدین منظور 115 دانشجوی مرد و زن رشته مترجمی زبان انگلیسی در این پزوهش شرکت نمودند.

Capacity Upper Bounds on Binary Deletion Channels

In this paper, we discuss the problem of bounding the capacity of binary deletion channels in light of the paper, “Tight Asymptotic Bounds for the Deletion Channel with Small Deletion Probabilities” (Kalai, Mitzenmacher, Sudan, 2010), which proves an upper bound of C ≤ 1 − (1 − o(1))H(p) for the capacity of a binary deletion channel for p approaching 0. We present a brief history surrounding th...

متن کامل

Upper Bounds on the Spanning Ratio of Constrained Theta-Graphs

We present tight upper and lower bounds on the spanning ratio of a large family of constrained θ-graphs. We show that constrained θ-graphs with 4k + 2 (k ≥ 1 and integer) cones have a tight spanning ratio of 1 + 2 sin(θ/2), where θ is 2π/(4k+ 2). We also present improved upper bounds on the spanning ratio of the other families of constrained θ-graphs.

متن کامل

Bounds on the capacity of constrained two-dimensional codes

Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run-length limits or a minimum distance between pixels of a given value.

متن کامل

Upper bounds on the solutions to n = p+m^2

ardy and Littlewood conjectured that every large integer $n$ that is not a square is the sum of a prime and a square. They believed that the number $mathcal{R}(n)$ of such representations for $n = p+m^2$ is asymptotically given by begin{equation*} mathcal{R}(n) sim frac{sqrt{n}}{log n}prod_{p=3}^{infty}left(1-frac{1}{p-1}left(frac{n}{p}right)right), end{equation*} where $p$ is a prime, $m$ is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2019

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2019.2897129